560 research outputs found

    The characterisation of Pax3 expressant cells in adult peripheral nerve

    Get PDF
    Pax3 has numerous integral functions in embryonic tissue morphogenesis while knowledge of its complex function in cells of adult tissue continues to unfold. Across a variety of adult tissue lineages, the role of Pax3 is principally linked to maintenance of the tissue’s resident stem and progenitor cell population. In adult peripheral nerves, Pax3 is reported to be expressed in nonmyelinating Schwann cells, however, little is known about the purpose of this expression. Based on the evidence of its role in other adult tissue stem and progenitor cell maintenance, it was hypothesised that the cells in adult peripheral nerve that express Pax3 may be Schwann glioblasts. Here, methods have been developed for visualisation of Pax3 expressant cells in normal 60 day old mouse peripheral nerve. Visualisation allowed morphological, anatomical and phenotypic distinctions to be made between these Pax3 expressing cells and Remak bundle nonmyelinating Schwann cells. The distinctions described herein, together with the finding that Pax3 expressing cells co-express stem cell marker Sox2, provides compelling support for the suggestion that a progenitor Schwann cell population may be present in adult mouse peripheral nerve

    Pax3 expression in cutaneous malignant melanoma

    Get PDF
    This research investigated the repercussions of aberrant PAX3 re-expression in cutaneous malignant melanoma (CMM). The transcription, factor encoded by PAX is amongst the first expressed in the embryo, with a principal role in the development of the melanocytic lineage. We theorised that abnormal re-expression of PAX3, consistently observed in CMM as compared to normal melanocytes, is linked to progression of CMM. Previous studies have stated that expression profiles of PAX3 in CMM demonstrate predominant generation of a protein encoded by exons 1-9 (PAX3D) utilizing cryptic splice sites in post-transcriptional pre-mRNA splicing. By contrast, normal human skin demonstrates low level generation of PAX3C (encoded by exons 1-8). Using RT-PCR based techniques and immunohistochemistry, we present original evidence of Pax3c, Pax3d mRNA and protein expression in normal murine embryogenesis and melanogenesis, identifying a conserved role for the Pax3d protein in transcriptional regulation of the murine melanoblast. Furthermore, to identify a role for Pax3 in adult skin, we used a reliable time-scale for the strict coupling of melanogenesis to active hair regrowth; Pax3c and Pax3d expression profiles were assessed during depilation experiments which induced murine malanocytic stem cells to proliferate, migrate into the hair cortex and differentiate in order to produce melanin for new hair. Results indicate that strict temporal expression of Pax3d may be linked to either melanoblast proliferation or migration in early melanogenesis thus supporting a possible role for PAX3D in the tumourigenesis of CMM

    The Characterisation of Pax3 Expressant Cells in Adult Peripheral Nerve

    Get PDF
    Pax3 has numerous integral functions in embryonic tissue morphogenesis and knowledge of its complex function in cells of adult tissue continues to unfold. Across a variety of adult tissue lineages, the role of Pax3 is principally linked to maintenance of the tissue’s resident stem/progenitor cell population. In adult peripheral nerves, Pax3 is reported to be expressed in nonmyelinating Schwann cells, however, little is known about the purpose of this expression. Based on the evidence of the role of Pax3 in other adult tissue stem and progenitor cells, it was hypothesised that the cells in adult peripheral nerve that express Pax3 may be peripheral glioblasts. Here, methods have been developed for identification and visualisation of Pax3 expressant cells in normal 60 day old mouse peripheral nerve that allowed morphological and phenotypic distinctions to be made between Pax3 expressing cells and other nonmyelinating Schwann cells. The distinctions described provide compelling support for a resident glioblast population in adult mouse peripheral nerve

    Investigation of Authophagy in Activated Monocytes

    Get PDF
    The innate immune system is the body’s first line of defense against foreign molecules. When white blood cells like monocytes encounter a foreign molecule, they initiate an immune response to eliminate that molecule and further infection. Metabolism is the biochemical reactions that happen inside a cell. Typically, cell metabolism increases in active cells. It would therefore be thought that metabolic processes would increase in monocytes that have become activated through the innate immune response. A study conducted by this laboratory, however, indicated that transporter proteins responsible for delivering metabolic substrates to cells were decreased in expression in response to an immune challenge. Therefore, the purpose of the present study was to determine if activated monocytes rely on substrates already found within the cell by using a process known as autophagy or “self-eating.” It was hypothesized that proteins involved in autophagy would increase in expression during an immune response as compared to normal, non-treated conditions. The RAW 264.7 cell line was treated with 1 g/mL lipopolysaccharide (LPS), which is a component of Gram-negative bacteria or with saline. After 24 hours, RAW 264.7 cellular proteins were isolated and the expression of four proteins known to be involved in various events in the autophagy process were analyzed via an ELISA. It was determined that no significant difference in expression was observed for the autophagy-specific proteins in the LPS-treated cells when compared to those treated with saline. The data indicate that activated monocytes do not undergo autophagy to support their metabolic needs

    Sensing the cilium, digital capture of ciliary data for comparative genomics investigations.

    Get PDF
    Cilia are specialized, hair-like structures that project from the cell bodies of eukaryotic cells. With increased understanding of the distribution and functions of various types of cilia, interest in these organelles is accelerating. To effectively use this great expansion in knowledge, this information must be made digitally accessible and available for large-scale analytical and computational investigation. Capture and integration of knowledge about cilia into existing knowledge bases, thus providing the ability to improve comparative genomic data analysis, is the objective of this work. Cilia 2018; 7:3

    Pax genes: Regulators of lineage specification and progenitor cell maintenance

    Get PDF
    Pax genes encode a family of transcription factors that orchestrate complex processes of lineage determination in the developing embryo. Their key role is to specify and maintain progenitor cells through use of complex molecular mechanisms such as alternate RNA splice forms and gene activation or inhibition in conjunction with protein co-factors. The significance of Pax genes in development is highlighted by abnormalities that arise from the expression of mutant Pax genes. Here, we review the molecular functions of Pax genes during development and detail the regulatory mechanisms by which they specify and maintain progenitor cells across various tissue lineages. We also discuss mechanistic insights into the roles of Pax genes in regeneration and in adult diseases, including cancer

    TGF-beta signaling proteins and the Protein Ontology

    Get PDF
    The Protein Ontology (PRO) is designed as a formal and principled Open Biomedical Ontologies (OBO) Foundry ontology for proteins. The components of PRO extend from a classification of proteins on the basis of evolutionary relationships at the homeomorphic level to the representation of the multiple protein forms of a gene, including those resulting from alternative splicing, cleavage and/or posttranslational modifications. Focusing specifically on the TGF-beta signaling proteins, we describe the building, curation, usage and dissemination of PRO. PRO provides a framework for the formal representation of protein classes and protein forms in the OBO Foundry. It is designed to enable data retrieval and integration and machine reasoning at the molecular level of proteins, thereby facilitating cross-species comparisons, pathway analysis, disease modeling and the generation of new hypotheses

    Automated Annotation-Based Bio-Ontology Alignment with Structural Validation

    Get PDF
    We outline the structure of an automated process to both align multiple bio-ontologies in terms of their genomic co-annotations, and then to measure the structural quality of that alignment. We illustrate the method with a genomic analysis of 70 genes implicated in lung disease against the Gene Ontology

    A domain ontology for the non-coding RNA field

    Get PDF
    Identification of non-coding RNAs (ncRNAs) has been significantly enhanced due to the rapid advancement in sequencing technologies. On the other hand, semantic annotation of ncRNA data lag behind their identification, and there is a great need to effectively integrate discovery from relevant communities. To this end, the Non-Coding RNA Ontology (NCRO) is being developed to provide a precisely defined ncRNA controlled vocabulary, which can fill a specific and highly needed niche in unification of ncRNA biology
    • …
    corecore